Some q-supercongruences modulo the fourth power of a cyclotomic polynomial
نویسندگان
چکیده
With the help of creative microscoping method recently introduced by Guo and Zudilin Chinese remainder theorem for coprime polynomials, we establish a q -supercongruence with two parameters modulo [ n ] ? ( ) 3 . Here = 1 ? / is -th cyclotomic polynomial in In particular, confirm recent conjecture give complete -analogue Long's supercongruence. The latter also generalization obtained Schlosser.
منابع مشابه
extensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولThe Cyclotomic Polynomial Topologically
We interpret the coefficients of the cyclotomic polynomial in terms of simplicial homology.
متن کاملMultiplicative Energy of Polynomial Images of Intervals Modulo q ∗ †
Given a smooth integer q, we use existing upper bounds for character sums to find a lower bound for the size of a multiplicative subgroup of the integers modulo q which contains the image of an interval of consecutive integers I ⊂ Zq under a polynomial f ∈ Z[X].
متن کاملOn the Cyclotomic Polynomial
For a given positive integer m and an algebraic number field K necessary and sufficient conditions for the mth cyclotomic polynomial to have K-integral solutions modulo a given integer of K are given. Among applications thereof are: that the solvability of the cyclotomic polynomial mod an integer yields information about the class number of related number fields; and about representation of int...
متن کاملA Topological Interpretation of the Cyclotomic Polynomial
We interpret the coefficients of the cyclotomic polynomial in terms of simplicial homology. Résumé. Nous donnons une interprétation des coefficients du polynôme cyclotomique en utilisant l’homologie simpliciale.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2021
ISSN: ['0097-3165', '1096-0899']
DOI: https://doi.org/10.1016/j.jcta.2021.105469